Case study

Volta Charging: Rapidly Scaling Up Site-Selection

Company

Volta Charging

Headquarters

San Francisco

Industry

Retail & Advertising
Contact Sales

The Problem: Rapidly Scaling Site Selection

How can Volta increase scale quickly, while maintaining precision and quality in site selection?

The Problem Solver: Volta

Volta Charging partners with property owners and businesses to install electric vehicle charging stations in high-traffic areas like shopping centers and grocery stores. Volta simultaneously partners with sponsor brands to install advertising on their charging stations, allowing vehicles to be charged at no cost to the customers.

The Challenge: Precision Charger Placement

To build the smartest, free national electric vehicle charging network, Volta requires effective placement of its charging stations to maximize value to both advertising partners and retailers. Volta must ensure their chargers are placed in high-traffic locations near Points of Interest whose visitor demographics are attractive to brand advertisers. Furthermore, Volta needs to prove the value of these charging stations to stores and property owners, establishing a clear ROI in converting traditional parking spots into EV charging stations, while anticipating demand in the near future.

To tackle this complicated challenge, Volta began by using a heuristic driven approach. As Volta’s operations scaled rapidly into new markets, they evolved towards a more sophisticated, data-driven site selection process, tying in first, second, and third-party datasets to ultimately predict placement success. 

In the process, Volta found that many proprietary data solutions suffered from a lack of precision and scope. Public transit data sources had their own problems, like different schemas and methodologies for different regions, making it impossible to adopt across the firm. The lack of precision in proprietary data combined with the noise and obscurity in available public data sources made it difficult for Volta’s data science team to derive valuable insights to present to their retail and advertising partners.

The Solution: SafeGraph Patterns Data

To overcome these industry challenges, Volta’s data science team evaluated multiple location data providers before choosing SafeGraph.

Volta chose SafeGraph data not only for its high precision and scope, but also due to the usability and cleanliness of the data when compared to other Point of Interest data providers.

By integrating SafeGraph Patterns data, Volta was able to leverage the power of anonymized mobile location data. They analyzed dwell time metrics and visitation patterns to show retailers how the installation of an EV station outside their property led to a measurable increase in store visit durations. 

To solve the problem of picking the best store locations, Volta used foot traffic counts, established travel motifs, and extrapolated demographic profiles of the stores to determine the POIs that best fit their network, and ultimately created stronger partnerships with grocers, retailers, entertainment venues (and more) by proving the value of their charging stations through data-driven insights.

SafeGraph’s precision-based places data was crucial in allowing us to scale our operations and harness a data-driven approach to expansion.
Eric Kung

Head of Research & Data Insights

Overall, by integrating SafeGraph Patterns data into its site selection process, Volta was able to maintain quality placements while undergoing rapid growth, strengthen its relationship with site partners, and ultimately provide the most charge per dollar of capital invested.

Interested in SafeGraph's POI data?

View the data schema or contact sales for more information.